PSK-31

What is it?
What do I need?
How do I use it?

Randy Hall KyAGE

First, a little bit about me

I was first licensed in 1968

I've been around video since high school

- Built a TV camera as high school electronics project
- Worked on remote TV broadcast as cameraman and engineer
- Worked at college TV studio, Rochester Institute of Technology

Work for broadcast equipment manufacturers

 Grass Valley/Belden/Miranda/NVISION and Grass Valley Group, now RETIRED!!!

First Youtube video in August 2006, now over 9 years 130+Videos

Over 3,100,00 total views

Over 18,000+ subscribers

Now part of the Ham Nation gang,

Wednesday nights 6 PM twit.tv

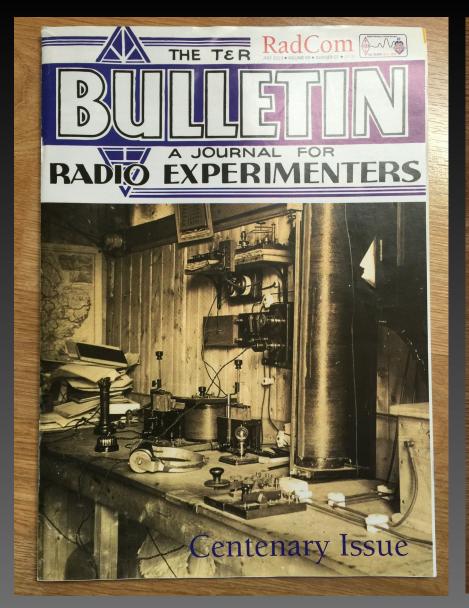


FIGURE 2: Showing the waveform of BPSK sending the Varicode 'space' symbol.

These factors lead me to suggest that there is a case for a transmission system that is not based on the use of error-correcting codes, when the specific application is that of live contacts. The continued popularity of traditional RTTY, using the start-stop system, is proof of this hypothesis: there is minimal delay (150ms), the flow

of conversation is continuous, the error-rate is tolerable, and it is easy to listen-in and join-in.

IMPROVING ON RTTY

How, then, do we go about using modern techniques that were not available in the '60s, to improve on traditional RTTY? First traditional RTTY? First trades since we are talking about live contacts, there is no need to discuss

any system that transmits text any faster than can be typed by hand. Secondly, modern transceivers are far more stable in frequency than they were in the '60s, so we should be able to use much narrower bandwidths than its very should be able to use much narrower bandwidths than in those days. Thirdly digital processors are much more nowerful than are much more powerful than the rotating cams and levers of the mechanical teleprinter. mechanical teleprinter, so we could use better coding tolerant technique of frèquency-shift keying, and the fixed-length five-unit start-stop code etil tolerant length (fixed-length) five-unit start-stop code still used today for RTTY are a legacy of the limitations of technology 20 limitations of technology 30 years ago. We can do better now.

July 2013

December 1998

What is PSK-31?

PSK-31 is a digital mode developed by

Peter Martinez, G₃PLX

Introduced in 1998, 17 years ago

PSK's advantages include:

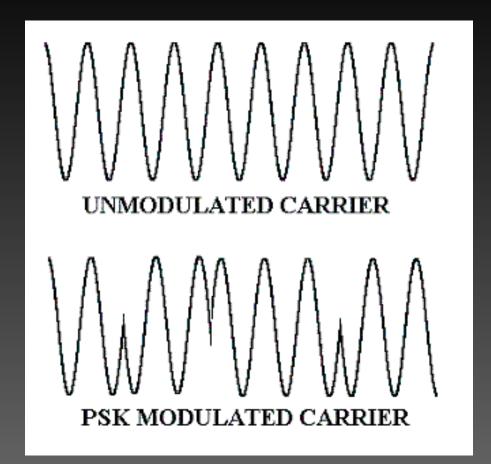
- Less bandwidth, more stations
- Better error rate than RTTY on noisy channels
- Lower RF power requirement, great for QRP ops

PSK-31 uses

- phase shift keying , not frequency shift like RTTY
- special code, Varicode
- Sound Card interface

Phase Shift Keying

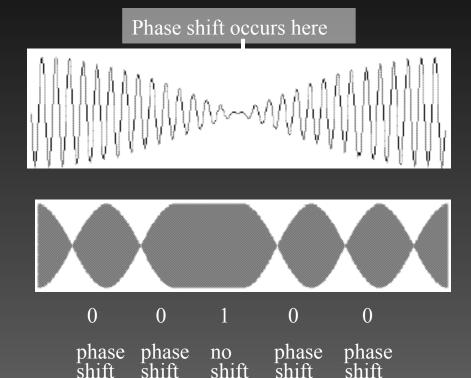
PSK-31 uses Binary Phase Shift Keying (BPSK)


The keying rate is 31.25 bits/sec

The effective speed for plain English text is approximately 50 words/minute

Phase Shift Keying

Phase Shift Keying


Why 31.25 bits/sec?

 This frequency is easily derived from the sound card's 8000 Hz clock frequency

To reduce the bandwidth of the PSK signal, the signal is shaped so that phase transitions occur only when the signal amplitude is zero

A "o" (space) is a 180 degree phase shift

A "1" (mark) is no phase shift

Varicode

Developed by Peter Martinez G3PLX

The most frequently used characters use the least number of bits

- e uses less bits than a Z
- Lower case uses fewer bits than uppercase

Unlike the Baudot code used for RTTY,

Same number of bits for all characters

Varicode supports

- 127 character ASCII character set,
- which includes upper and lower case letters, @
- numbers and punctuation.
- And BACKSPACE!

Printable characters

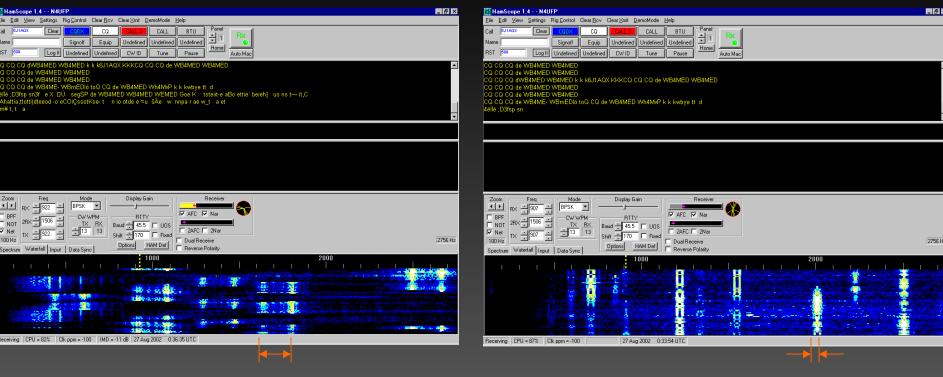
					1						1		l _	I		
Varicode				Glyph		Varicode				Glyph		Varicode				Glyph
1	040	32	20	SP		1010111101	100	64	40	@		1011011111	140	96	60	`
111111111	041	33	21	!		1111101	101	65	41	Α		1011	141	97	61	а
101011111	042	34	22			11101011	102	66	42	В		1011111	142	98	62	b
111110101	043	35	23	#		10101101	103	67	43	С		101111	143	99	63	С
111011011	044	36	24	\$		10110101	104	68	44	D		101101	144	100	64	d
1011010101	045	37	25	%		1110111	105	69	45	E		11	145	101	65	е
1010111011	046	38	26	&		11011011	106	70	46	F		111101	146	102	66	f
101111111	047	39	27			11111101	107	71	47	G		1011011	147	103	67	g
11111011	050	40	28	(101010101	110	72	48	Н		101011	150	104	68	h
11110111	051	41	29)		1111111	111	73	49	1		1101	151	105	69	i
101101111	052	42	2A	*		111111101	112	74	4A	J		111101011	152	106	6A	j
111011111	053	43	2B	+		101111101	113	75	4B	K		10111111	153	107	6B	k
1110101	054	44	2C	,		11010111	114	76	4C	L		11011	154	108	6C	- 1
110101	055	45	2D	-		10111011	115	77	4D	M		111011	155	109	6D	m
1010111	056	46	2E	-		11011101	116	78	4E	N		1111	156	110	6E	n
110101111	057	47	2F	/		10101011	117	79	4F	0		111	157	111	6F	o
10110111	060	48	30	0		11010101	120	80	50	Р		111111	160	112	70	р
10111101	061	49	31	1		111011101	121	81	51	Q		110111111	161	113	71	q
11101101	062	50	32	2		10101111	122	82	52	R		10101	162	114	72	r
11111111	063	51	33	3		1101111	123	83	53	S		10111	163	115	73	s
101110111	064	52	34	4		1101101	124	84	54	Т		101	164	116	74	t
101011011	065	53	35	5		101010111	125	85	55	U		110111	165	117	75	u
101101011	066	54	36	6		110110101	126	86	56	V		1111011	166	118	76	v
110101101	067	55	37	7		101011101	127	87	57	w		1101011	167	119	77	w
110101011	070	56	38	8		101110101	130	88	58	х		11011111	170	120	78	×
110110111	071	57	39	9	1	101111011	131	89	59	Y		1011101	171	121	79	У
11110101	072	58	3A	:	1	1010101101	132	90	5A	Z	1	111010101	172	122	7A	z

Play varicode video

Real-World Performance of PSK-31

The power in a PSK-31 signal is concentrated

- in a 31 Hz bandwidth,
- versus 250 Hz for RTTY


If a 100 W signal provides a 20 dB S/N ratio at the receiver using SSB,

- the same S/N ratio is achieved with 8W using RTTY
- and only <u>1W</u> using PSK-31!

Transcontinental QSO's using PSK-31 are possible using much less than 50 W

PSK-31 is a great QRP mode for those of us non-CW ops

Bandwidth Utilization

Bandwidth ~ 200 Hz

Bandwidth ~ 40 Hz

Waterfall display on the left shows several RTTY signals

Waterfall display on the right shows many PSK-31 signals

For the same character rate (~ 50 wpm) PSK uses 1/5 the bandwidth

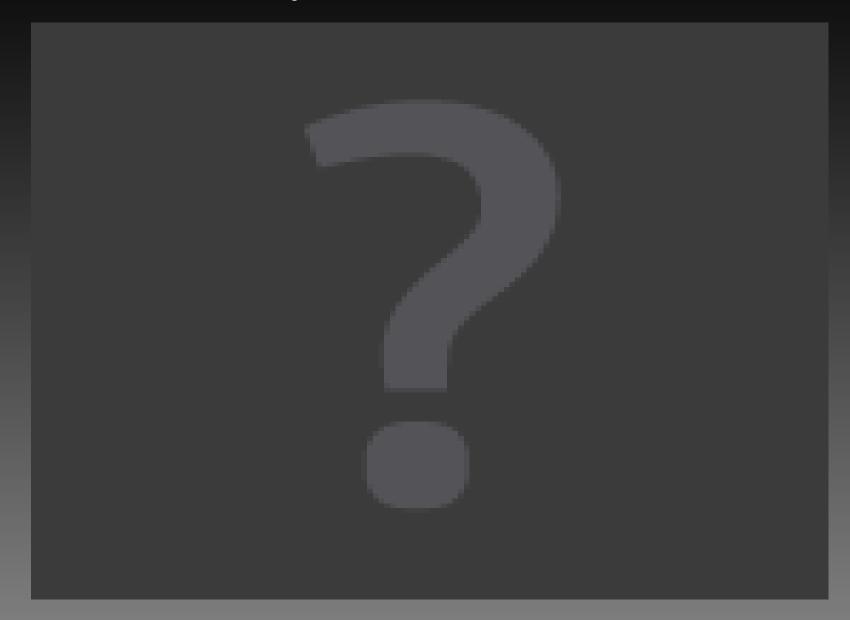
A 3 kHz SSB channel can support 10 or more PSK QSO's

PSK-31 Station Requirements

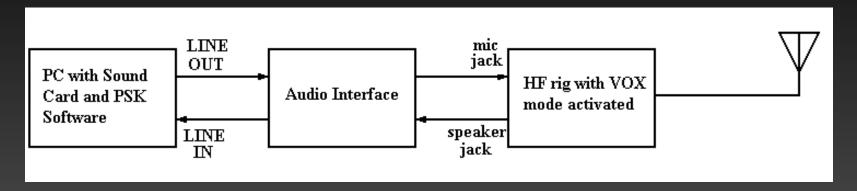
- 1. Amateur transceiver that has low frequency drift
- Any modern solid state rig is fine
- 2. PC, any current Windows 7 or 8 will work
- Most PSK-31 software is compatible with any version of Windows
- Sound card (16 bit Sound Blaster or better) is required
- Old junk PC will work
- 3. An sound card interface that connects the PC and the transceiver
- Homebrew, easy to build your own
- Commercially made (Tigertronics, RigBlaster, RASCAL, etc.)
- 4. Computer Software
- Digipan, simple and free
- FLDigi Linux, Windows, & MAC, supports many digital modes, free
- Ham Radio Deluxe DM78o, \$\$\$ fully featured, many modes, more complex

The PC Sound Card Interface

The interface provides matching and isolation between the audio inputs and outputs of the PC and the transceiver


The interface may also provide connections between the computer's serial port and the PTT input of the transceiver

Commercially made interfaces provide lots of functions and are very easy to install.


A simple homebrew interface can normally be built for less than \$10.

Some newer transceivers can be connected directly to a PC USB port: ICOM & Yaesu transceivers have built in sound card, USB cable to PC

My Video Demo

Basic PSK-31 Station Set-Up

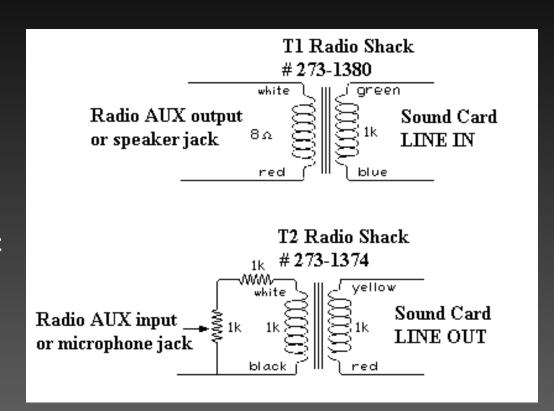
The HF rig operates in the USB mode.

The VOX should be activated

Output power should be set to 30 – 50 W

The transmit level should be set using the level controls in the software or the rig's mic gain control so that the ALC level is in the desired range. Do not overdrive

The receive level should be adjusted to a level that does not overdrive the sound card


Audio Interface Circuits

- 1. Acoustic Coupling
- Rig's speaker is placed near the PC's microphone
 - As seen in K7AGE's video!
- Rig's microphone is placed next to the PC's speaker
 - I received emails from hams doing this!
- VOX is used for T/R switching
- Advantages
 - Easy to try, no extra equipment required.
- Disadvantages
 - Transmit levels can be tricky to adjust
 - Ambient noise degrades signal

Audio Interface Circuits

2. Audio Coupling

- Audio transformers, a resistor, and a potentiometer are required
- Provides good isolation
- Potentiometer is used to set audio drive level for the transceiver
- Lots of information on the internet

PTT/RS-232 Interface Circuit

- If you are good,
 - You can build this into a DB9 connector hood.

RTS Line
pin 4 on DB25
pin 7 on DB9

Ground
pin 7 on DB25
pin 5 on DB9

PTT Line
PTT Line
FTT Line
FTT

VOX Switching

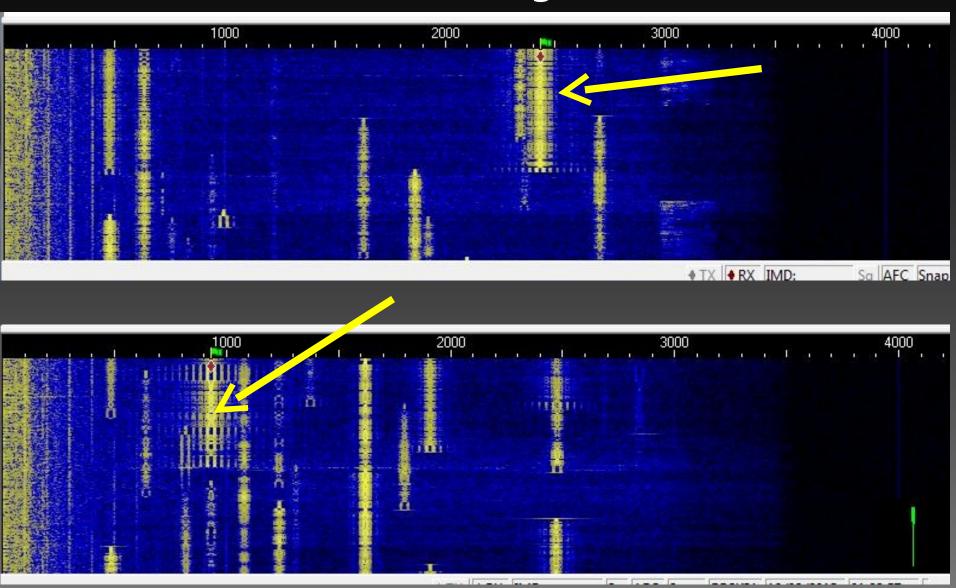
2. VOX operation

- Extremely simple; no connection is required between the RS-232 port and the rig
- Applies only to transceivers that have VOX circuits
- Provides good isolation between rig and computer
- Leaves the serial port free for rig control
- Not all radio allow VOX to be used with rear audio connectors

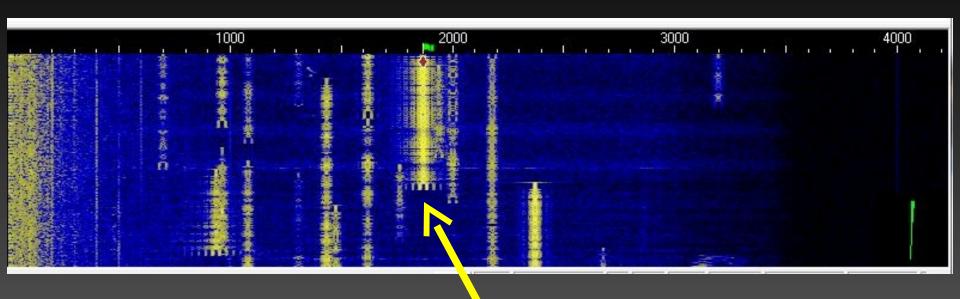
Setting up your Station for PSK31

Set-up of receive audio levels

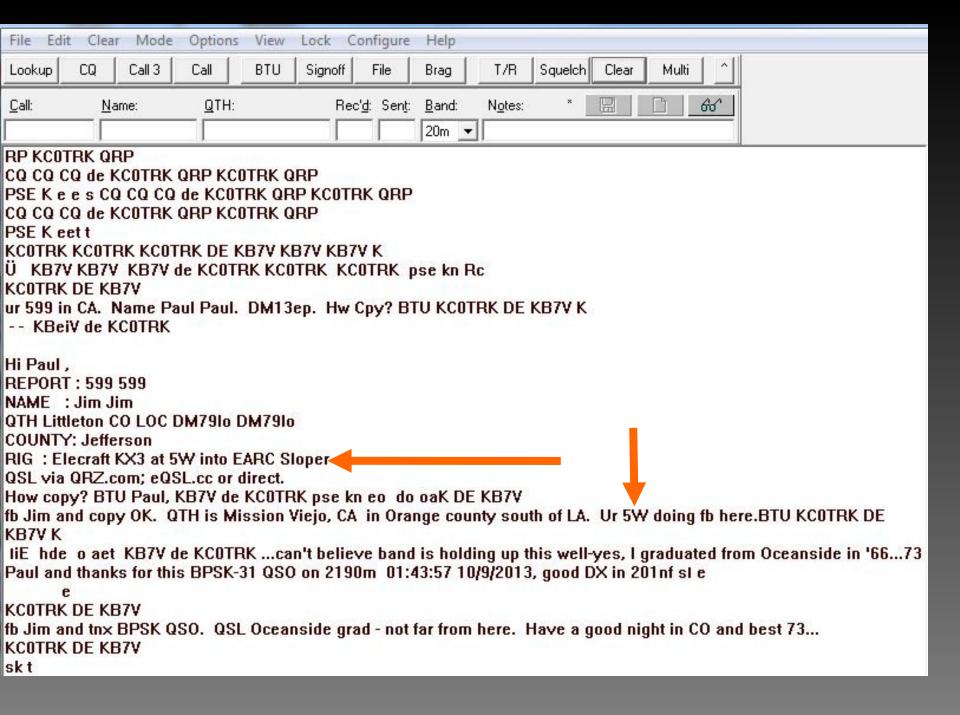
 Adjust the "Line In" that gives the best looking waterfall display in the PSK 31 software


Set-up of transmit audio levels

- This is done through MS Windows' audio mixer or application.
- Transmit an idle PSK31 signal into a dummy load and monitor the RF power.
- Increase level until RF power stops increasing, then back off a little
- Read your radio's manual for correct ALC setting


Watch out for "You Got Mail" blasting on 20 meters!

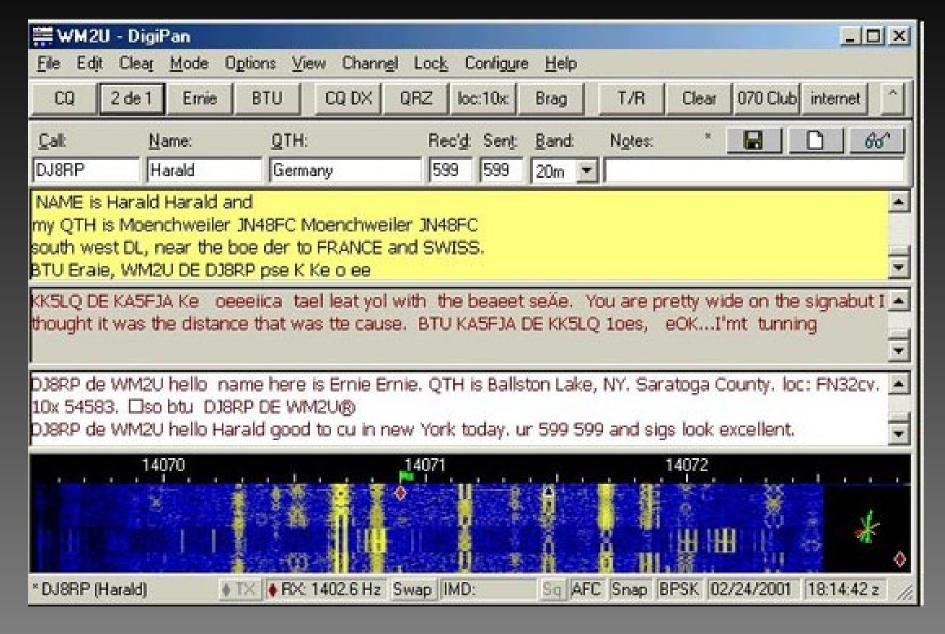
- Shut down programs that make noise
- If using second sound card, configure it for only radio sounds!


This is what over driving looks like

This is what over driving looks like

Even QRP can be wide 5 watts from a KX3 station

Where to hear PSK-31?


PSK-31 activity is concentrated around the following frequencies:

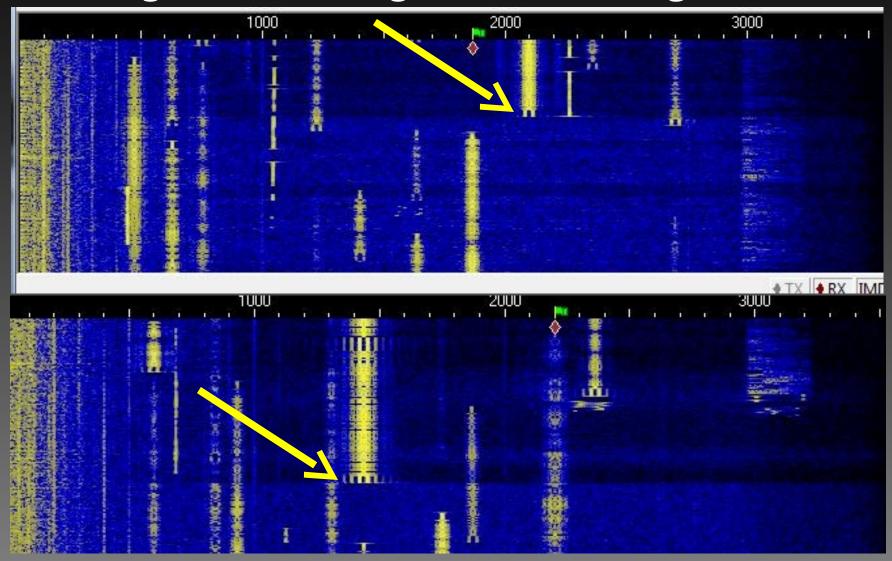
DIAL Display

USB Mode

- 1.83815 MHz
- 3.580 MHz
- 7.035 MHz
- 14.070 MHz, most popular
- 18.100 MHz
- 21.070 MHz
- 24.920 MHz
- 28.120 MHz Available for Technicians
- 50.290 MHz

Tuning in a PSK-31 signal

Tuning in a PSK-31 signal


by clicking the waterfall, not by turning the knob •14.070 MHz Dial Display USB suppressed carrier

•1 KHz tone = 14.071 frequency

•2 KHz tone = 14.072 frequency

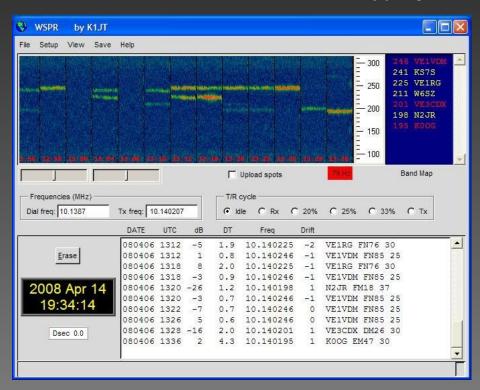
Receiver AGC action Background changes with strong station

Where to Find More Information

- PSK31 Guide
 - •bpsk31.com/
- Official home page
 - aintel.bi.ehu.es/psk31.html
- Steve Ford's original QST article
 - •arrl.org/tis/info/HTML/psk31 ()
- •Google PSK-31
- •And, I have many PSK-31 videos

Other Sound Card Modes

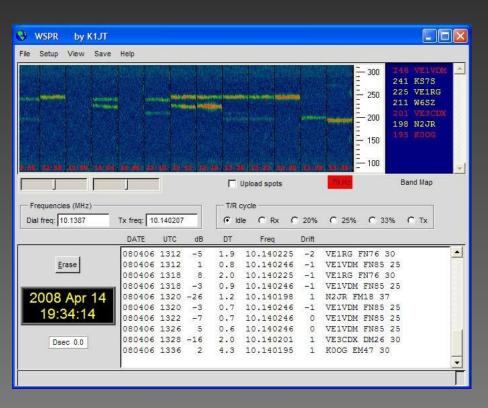
- •WSPR
- •*JT-65HF*
- •SSTV
- •Digital SSTV
- •Free DV

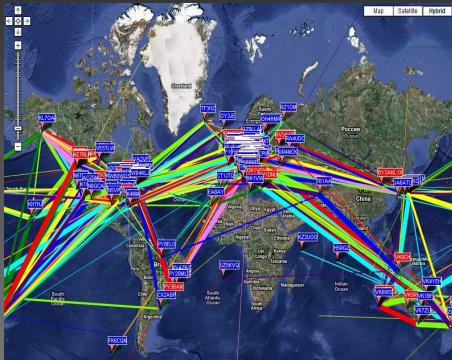

Other Sound Card Modes

- •WSPR
- •*JT-65HF*
- •SSTV
- •Digital SSTV
- •Free DV
- •Hellschreiber

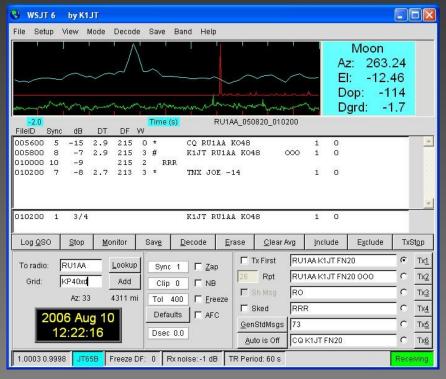
WSPR

•Weak Signal Propagation Reporter


WSPR implements a protocol designed for probing potential propagation paths with low-power transmissions. Normal transmissions carry a station's callsign, Maidenhead grid locator, and transmitter power in dBm. The program can decode signals with S/N as low as -28 dB in a 2500 Hz bandwidth. Stations with internet access can automatically upload their reception reports to a central database called WSPRnet, which includes a mapping facility. 20 Meters 14.0956

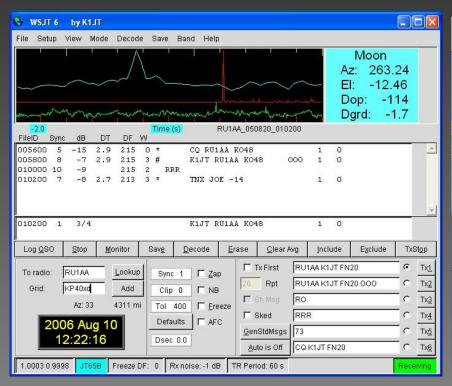


WSPR



JT-65HF

Weak Signal Communication, by K1JT


WSJT offers specific digital protocols optimized for EME (moonbounce), meteor scatter, and ionospheric scatter, at VHF/UHF, as well as for HF skywave propagation. The program can decode fraction-of-a-second signals reflected from ionized meteor trails and steady signals 10 dB below the audible threshold. Check the WSJT page and links therein for details about modes JTMS, FSK441, ISCAT, JT6M, JT65, and JT4. 20 Meters: 14.076

JT-65HF

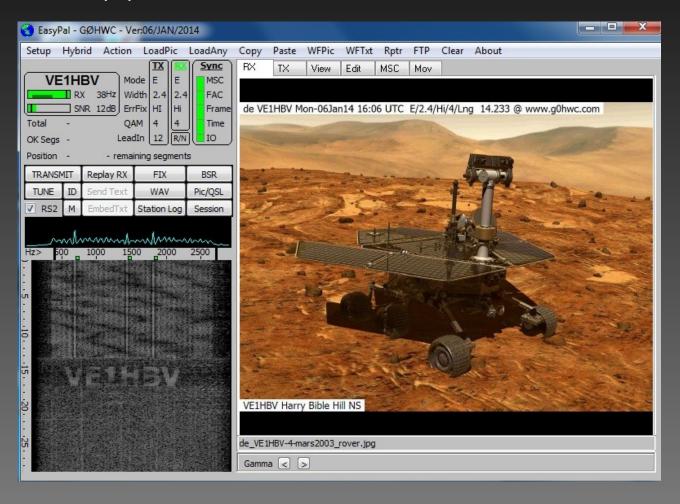
SSTV

Slow Scan TV

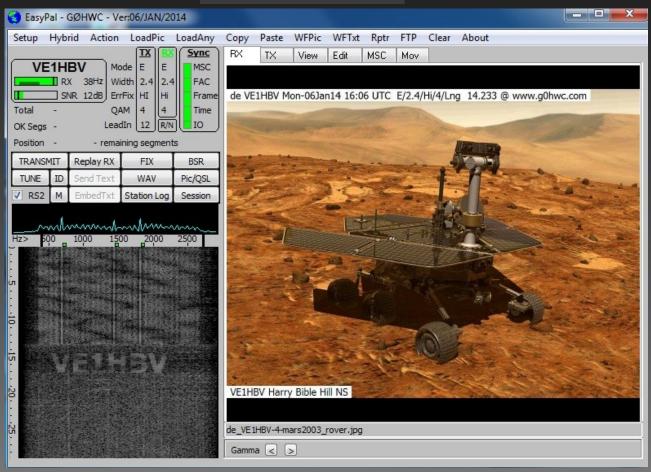
Developed back in the 50s, provides sending and receiving still picture over a voice circuit.

MMSSTV, free and popular, 20 Meters 14.230

SSTV

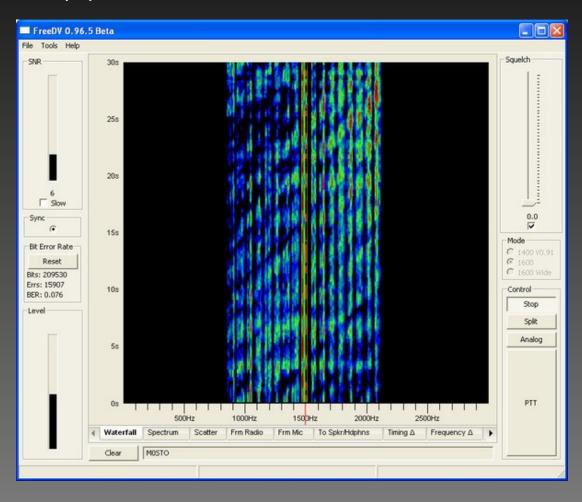


Digital SSTV

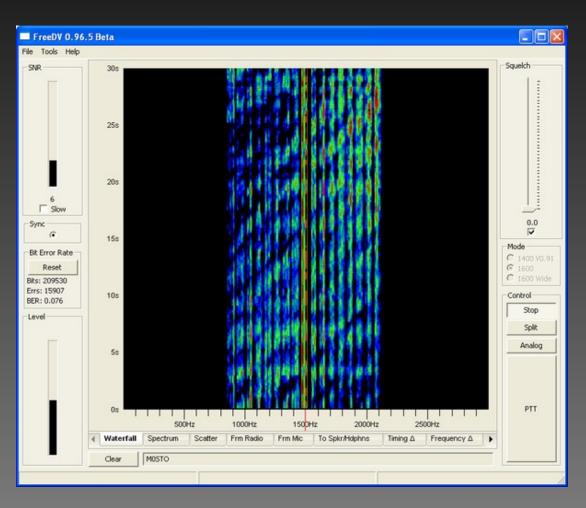

Digital picture file transfer

EasyPal, free and popular, 20 Meters 14.233

Digital SSTV

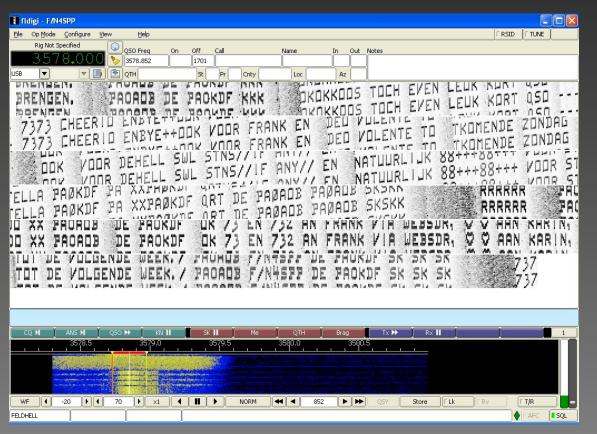


Free DV


Digital voice on HF

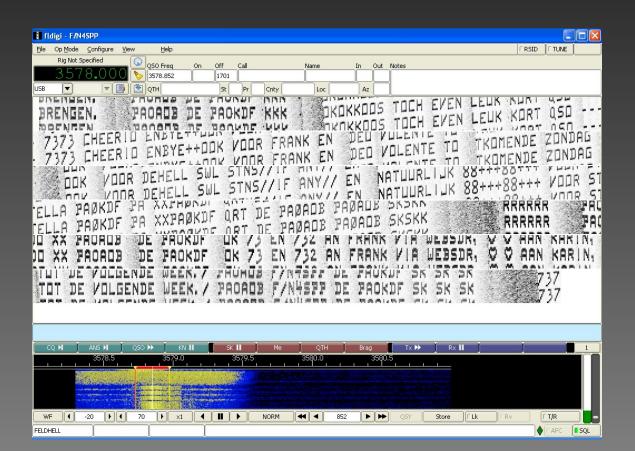
Free DV, free and popular, needs two sound cards, 20 Meters 14.236

Free DV



Hellschreiber

Fax mode from back in the 20s


Feld Hell Club, monthly sprint contests

FLDigi, 20 Meters 14.063

Hellschreiber

Thanks for listening Randy, K7AGE

k7age@k7age.com